324 research outputs found

    HySIA: Tool for Simulating and Monitoring Hybrid Automata Based on Interval Analysis

    Full text link
    We present HySIA: a reliable runtime verification tool for nonlinear hybrid automata (HA) and signal temporal logic (STL) properties. HySIA simulates an HA with interval analysis techniques so that a trajectory is enclosed sharply within a set of intervals. Then, HySIA computes whether the simulated trajectory satisfies a given STL property; the computation is performed again with interval analysis to achieve reliability. Simulation and verification using HySIA are demonstrated through several example HA and STL formulas.Comment: Appeared in RV'17; the final publication is available at Springe

    Robust Online Monitoring of Signal Temporal Logic

    Full text link
    Signal Temporal Logic (STL) is a formalism used to rigorously specify requirements of cyberphysical systems (CPS), i.e., systems mixing digital or discrete components in interaction with a continuous environment or analog com- ponents. STL is naturally equipped with a quantitative semantics which can be used for various purposes: from assessing the robustness of a specification to guiding searches over the input and parameter space with the goal of falsifying the given property over system behaviors. Algorithms have been proposed and implemented for offline computation of such quantitative semantics, but only few methods exist for an online setting, where one would want to monitor the satisfaction of a formula during simulation. In this paper, we formalize a semantics for robust online monitoring of partial traces, i.e., traces for which there might not be enough data to decide the Boolean satisfaction (and to compute its quantitative counterpart). We propose an efficient algorithm to compute it and demonstrate its usage on two large scale real-world case studies coming from the automotive domain and from CPS education in a Massively Open Online Course (MOOC) setting. We show that savings in computationally expensive simulations far outweigh any overheads incurred by an online approach

    Temporal Precedence Checking for Switched Models and its Application to a Parallel Landing Protocol

    Get PDF
    This paper presents an algorithm for checking temporal precedence properties of nonlinear switched systems. This class of properties subsume bounded safety and capture requirements about visiting a sequence of predicates within given time intervals. The algorithm handles nonlinear predicates that arise from dynamics-based predictions used in alerting protocols for state-of-the-art transportation systems. It is sound and complete for nonlinear switch systems that robustly satisfy the given property. The algorithm is implemented in the Compare Execute Check Engine (C2E2) using validated simulations. As a case study, a simplified model of an alerting system for closely spaced parallel runways is considered. The proposed approach is applied to this model to check safety properties of the alerting logic for different operating conditions such as initial velocities, bank angles, aircraft longitudinal separation, and runway separation

    Model Predictive Control for Signal Temporal Logic Specification

    Get PDF
    We present a mathematical programming-based method for model predictive control of cyber-physical systems subject to signal temporal logic (STL) specifications. We describe the use of STL to specify a wide range of properties of these systems, including safety, response and bounded liveness. For synthesis, we encode STL specifications as mixed integer-linear constraints on the system variables in the optimization problem at each step of a receding horizon control framework. We prove correctness of our algorithms, and present experimental results for controller synthesis for building energy and climate control

    Model Checking Tap Withdrawal in C. Elegans

    Full text link
    We present what we believe to be the first formal verification of a biologically realistic (nonlinear ODE) model of a neural circuit in a multicellular organism: Tap Withdrawal (TW) in \emph{C. Elegans}, the common roundworm. TW is a reflexive behavior exhibited by \emph{C. Elegans} in response to vibrating the surface on which it is moving; the neural circuit underlying this response is the subject of this investigation. Specifically, we perform reachability analysis on the TW circuit model of Wicks et al. (1996), which enables us to estimate key circuit parameters. Underlying our approach is the use of Fan and Mitra's recently developed technique for automatically computing local discrepancy (convergence and divergence rates) of general nonlinear systems. We show that the results we obtain are in agreement with the experimental results of Wicks et al. (1995). As opposed to the fixed parameters found in most biological models, which can only produce the predominant behavior, our techniques characterize ranges of parameters that produce (and do not produce) all three observed behaviors: reversal of movement, acceleration, and lack of response

    Compositional Falsification of Cyber-Physical Systems with Machine Learning Components

    Full text link
    Cyber-physical systems (CPS), such as automotive systems, are starting to include sophisticated machine learning (ML) components. Their correctness, therefore, depends on properties of the inner ML modules. While learning algorithms aim to generalize from examples, they are only as good as the examples provided, and recent efforts have shown that they can produce inconsistent output under small adversarial perturbations. This raises the question: can the output from learning components can lead to a failure of the entire CPS? In this work, we address this question by formulating it as a problem of falsifying signal temporal logic (STL) specifications for CPS with ML components. We propose a compositional falsification framework where a temporal logic falsifier and a machine learning analyzer cooperate with the aim of finding falsifying executions of the considered model. The efficacy of the proposed technique is shown on an automatic emergency braking system model with a perception component based on deep neural networks

    STL-based Analysis of TRAIL-induced Apoptosis Challenges the Notion of Type I/Type II Cell Line Classification

    Get PDF
    Extrinsic apoptosis is a programmed cell death triggered by external ligands, such as the TNF-related apoptosis inducing ligand (TRAIL). Depending on the cell line, the specific molecular mechanisms leading to cell death may significantly differ. Precise characterization of these differences is crucial for understanding and exploiting extrinsic apoptosis. Cells show distinct behaviors on several aspects of apoptosis, including (i) the relative order of caspases activation, (ii) the necessity of mitochondria outer membrane permeabilization (MOMP) for effector caspase activation, and (iii) the survival of cell lines overexpressing Bcl2. These differences are attributed to the activation of one of two pathways, leading to classification of cell lines into two groups: type I and type II. In this work we challenge this type I/type II cell line classification. We encode the three aforementioned distinguishing behaviors in a formal language, called signal temporal logic (STL), and use it to extensively test the validity of a previously-proposed model of TRAIL-induced apoptosis with respect to experimental observations made on different cell lines. After having solved a few inconsistencies using STL-guided parameter search, we show that these three criteria do not define consistent cell line classifications in type I or type II, and suggest mutants that are predicted to exhibit ambivalent behaviors. In particular, this finding sheds light on the role of a feedback loop between caspases, and reconciliates two apparently-conflicting views regarding the importance of either upstream or downstream processes for cell-type determination. More generally, our work suggests that these three distinguishing behaviors should be merely considered as type I/II features rather than cell-type defining criteria. On the methodological side, this work illustrates the biological relevance of STL-diagrams, STL population data, and STL-guided parameter search implemented in the tool Breach. Such tools are well-adapted to the ever-increasing availability of heterogeneous knowledge on complex signal transduction pathways

    Lagrangian Reachabililty

    Full text link
    We introduce LRT, a new Lagrangian-based ReachTube computation algorithm that conservatively approximates the set of reachable states of a nonlinear dynamical system. LRT makes use of the Cauchy-Green stretching factor (SF), which is derived from an over-approximation of the gradient of the solution flows. The SF measures the discrepancy between two states propagated by the system solution from two initial states lying in a well-defined region, thereby allowing LRT to compute a reachtube with a ball-overestimate in a metric where the computed enclosure is as tight as possible. To evaluate its performance, we implemented a prototype of LRT in C++/Matlab, and ran it on a set of well-established benchmarks. Our results show that LRT compares very favorably with respect to the CAPD and Flow* tools.Comment: Accepted to CAV 201
    • …
    corecore